Reconstructing genomes from metagenomes: The holy grail of microbiology

Shotgun metagenomics provides insights into a larger context of naturally occurring microbial genomes when short reads are assembled into contiguous DNA segments (contigs). Contigs are often orders of magnitude longer than individual sequences, offering improved annotations, and key information about the organization of genes in cognate genomes. Several factors affect the assembly performance, and the feasibility of the assembly-based approaches varies across environments. However, increasing read lengths, novel experimental approaches, advances in computational tools and resources, and improvements in assembly algorithms and pipelines render the assembly-based metagenomic workflow more and more accessible. The utility of metagenomic assembly remarkably increases when contigs are organized into metagenome-assembled genomes (MAGs). Often-novel MAGs frequently provide deeper insights into bacterial lifestyles that would otherwise remain unknown as evidenced by recent discoveries. The increasing rate of the recovery of MAGs presents new opportunities to link environmental distribution patterns of microbial populations and their functional potential, and transforms the field of microbiology by providing a more complete understanding of the microbial life, ecology, and evolution.

Licence: Creative Commons Attribution Non Commercial No Derivatives 4.0 International

Keywords: metagenomics

Additional information

Remote created date: 2016-12-16

Remote updated date: 2017-01-11