Multiple Comparative Metagenomics using Multiset k-mer Counting

Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can be associated to known organisms. On the other hand, de novo methods, that compare the whole set of sequences, do not scale up on ambitious metagenomic projects.
These limitations motivated the development of a new de novo metagenomic comparative method, called Simka. This method computes a large collection of standard ecology distances by replacing species counts by k-mer counts. Simka scales-up today metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets.
Experiments on public Human Microbiome Project datasets demonstrate that Simka captures the essential underlying biological structure. Simka was able to compute in a few hours both qualitative and quantitative ecology distances on hundreds of metagenomic samples (690 samples, 32 billions of reads). We also demonstrate that analyzing metagenomes at the k-mer level is highly correlated with extremely precise de novo comparison techniques which rely on all-versus-all sequences alignment strategy.

Keywords: metagenomics

Licence: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

Remote created date: 2016-12-16

Remote updated date: 2017-01-11

Multiple Comparative Metagenomics using Multiset k-mer Counting https://tess.elixir-europe.org/materials/multiple-comparative-metagenomics-using-multiset-k-mer-counting-4c0add23-9776-4d57-8bd2-43ce078fd286 Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can be associated to known organisms. On the other hand, de novo methods, that compare the whole set of sequences, do not scale up on ambitious metagenomic projects. These limitations motivated the development of a new de novo metagenomic comparative method, called Simka. This method computes a large collection of standard ecology distances by replacing species counts by k-mer counts. Simka scales-up today metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets. Experiments on public Human Microbiome Project datasets demonstrate that Simka captures the essential underlying biological structure. Simka was able to compute in a few hours both qualitative and quantitative ecology distances on hundreds of metagenomic samples (690 samples, 32 billions of reads). We also demonstrate that analyzing metagenomes at the k-mer level is highly correlated with extremely precise de novo comparison techniques which rely on all-versus-all sequences alignment strategy. metagenomics 2016-12-16 2017-01-11