(2024) Epigenomics Analysis: Montréal, QC
Date: 26 - 29 August 2024
High-throughput sequencing of Chromatin-Immunoprecipitated libraries (ChIP-seq) and of bisulfite converted DNA (WGBS) have become increasingly common and have largely supplanted microarrays for chromatin and DNA methylation profiling. When processed appropriately, ChIP-seq data provides base-pair resolution representations of transcription factor DNA-binding events and nucleosome (histone) modifications genome-wide. Similarly, WGBS can provide a quantitative genome wide profile of cytosine methylation. The CBW has developed a 4-day course providing an introduction to histone ChIP-seq and WGBS data analysis followed by integrated tutorials demonstrating the use of open source ChIP-Seq and WGBS analysis packages. The tutorials are designed as self-contained units that include example data and detailed instructions for installation of all required bioinformatics tools (FASTQC, BWA, MACS2, samtools, Picard, BisSNP). The course also includes an overview of integrative epigenomic tools that have been developed to explore ChIP-Seq and WGBS data together with other epigenomic datasets such as RNA-seq, DHS-seq and ATAC-seq. This is a distributed workshop. It is held simultaneously at two locations, with faculty and TAs present at both venues. Lectures are broadcast back and forth between sites. When applying, please choose the location where you would like to attend.
City: Montreal
Region: Quebec
Country: Canada
Prerequisites:
Basic familiarity with Linux environment and S, R, or Matlab. You will also require your own laptop computer. Minimum requirements: 1024×768 screen resolution, 1.5GHz CPU, 2GB RAM, 10GB free disk space, recent versions of Windows, Mac OS X or Linux (Most computers purchased in the past 3-4 years likely meet these requirements). This workshop requires participants to complete pre-workshop tasks and readings.
Learning objectives:
Participants will gain practical experience and skills to be able to: Align ChIP-seq and WGBS sequence data to a reference genome (required) Identify narrow and broad peaks from ChIP-seq data Identify methylated levels from WGBS data Visualize and summarize the output of ChIP-Seq and WGBS analyses Explore integrative tools for epigenomic data sets Discover existing online resources to facilitate epigenomic data analysis
Capacity: 30
Event types:
- Workshops and courses
Activity log