Register training material
46 materials found

Keywords: Exploratory-analysis  or metagenomics  or Docker  or Information visualisation 


Keynote on Visual Analytics & Human/Computer Interfaces

Sara Irina Fabrikant discusses how analysis of scientific data can be enhanced using information visualization, visual analytics, cognition principles, and graphical user interface design. She focuses on the use of evaluation to valid visualization approaches. This talk was presented at VIZBI...

Keywords: Information visualisation

Resource type: Video

Keynote on Visual Analytics & Human/Computer Interfaces https://tess.elixir-europe.org/materials/keynote-on-visual-analytics-amp-human-computer-interfaces Sara Irina Fabrikant discusses how analysis of scientific data can be enhanced using information visualization, visual analytics, cognition principles, and graphical user interface design. She focuses on the use of evaluation to valid visualization approaches. This talk was presented at VIZBI 2013, an international conference series on visualizing biological data (http://vizbi.org). This video was filmed and distributed with permission under a Creative Commons license. Created at: VIZBI 2013. Information visualisation 2017-01-31
Keynote on Visual Design Principles

Martin Krzywinski (http://mkweb.bcgsc.ca/) gives a great primer on the key principles of effective visual design in biological sciences. During the talk he highlights the principles with examples from various peer-reviewed publications and discusses the practical aspects of effective figure...

Keywords: Genome, HCI, Information visualisation, Communication

Resource type: Video

Keynote on Visual Design Principles https://tess.elixir-europe.org/materials/keynote-on-visual-design-principles Martin Krzywinski (http://mkweb.bcgsc.ca/) gives a great primer on the key principles of effective visual design in biological sciences. During the talk he highlights the principles with examples from various peer-reviewed publications and discusses the practical aspects of effective figure design.This video was filmed and distributed with permission under a Creative Commons license. Created at: VIZBI 2013. Martin Krzywinski Genome, HCI, Information visualisation, Communication 2017-01-31
BBSRC: Data and Data Visualisation

Michael Ball from BBSRC's closing remarks on Data and Data Visualisation from 1st BiVi in 2014. Created at: 1st BiVi Annual Meeting.

Scientific topics: Phylogenetics, Pathway or network

Keywords: Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Information visualisation

Resource type: Video

BBSRC: Data and Data Visualisation https://tess.elixir-europe.org/materials/bbsrc-data-and-data-visualisation Michael Ball from BBSRC's closing remarks on Data and Data Visualisation from 1st BiVi in 2014. Created at: 1st BiVi Annual Meeting. Michael Ball Phylogenetics Pathway or network Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Information visualisation 2017-02-01
MARender: A Simple JavaScript Library for Biomedical Visualisation

Bill Hill and Richard Baldock describe MARender, a simple JavaScipt library for biomedical visualisation at 2nd BiVi in 2015.  Created at: 2nd BiVi Annual Meeting.

Keywords: Anatomy Physiology and Atlases, Information visualisation

Resource type: Slideshow

MARender: A Simple JavaScript Library for Biomedical Visualisation https://tess.elixir-europe.org/materials/marender-a-simple-javascript-library-for-biomedical-visualisation Bill Hill and Richard Baldock describe MARender, a simple JavaScipt library for biomedical visualisation at 2nd BiVi in 2015.  Created at: 2nd BiVi Annual Meeting. Mr. William Edward Hill Anatomy Physiology and Atlases, Information visualisation 2017-02-03
Visualization of Biomolecular Structures: State of the Art

Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on...

Keywords: Molecular, Information visualisation

Resource type: Slideshow

Visualization of Biomolecular Structures: State of the Art https://tess.elixir-europe.org/materials/visualization-of-biomolecular-structures-state-of-the-art Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures.Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Curve, surface, solid, and object representations Created at: EuroVis 2015. Barbara Kozlikova Michael Krone Molecular, Information visualisation 2017-02-28
Art and Science: A partnership catalyzing discovery in biomedicine

A 3rd BiVi 2017 Keynote Presentation by Bang Wong, Broad Institute of MIT & Harvard and Department of Art as Applied to Medicine, Johns Hopkins University School of MedicineChaired by: Geoff BartonThe data generated by the biomedical research community hold tremendous potential to inform our...

Scientific topics: Phylogenetics, Pathway or network

Keywords: Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Communication, Information visualisation

Resource type: Video

Art and Science: A partnership catalyzing discovery in biomedicine https://tess.elixir-europe.org/materials/art-and-science-a-partnership-catalyzing-discovery-in-biomedicine A 3rd BiVi 2017 Keynote Presentation by Bang Wong, Broad Institute of MIT & Harvard and Department of Art as Applied to Medicine, Johns Hopkins University School of MedicineChaired by: Geoff BartonThe data generated by the biomedical research community hold tremendous potential to inform our understanding and treatment of disease. The challenge is to ensure that technical and non-technical researchers can access, use and learn from this wealth of data and analytical resources. Bang will present examples of solutions developed at the Broad Institute that draw on art and design to enable scientific discovery.Bang Wong is the creative director of the Broad Institute of MIT & Harvard and an adjunct assistant professor in the Department of Art as Applied to Medicine at the Johns Hopkins University School of Medicine. His work focuses on the design and development of computation-visualization tools to meet the analytical challenges of research data. He leads the data visualization initiative at the Broad and is the founding author of Points of View published by Nature Methods, a series of articles that focus on the fundamental aspects of data presentation in science. Created at: 3rd BiVi Annual Meeting (2017). Bang Wong Phylogenetics Pathway or network Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Communication, Information visualisation 2017-05-12
From Visual Exploration of Biomedical Data to Storytelling and Back Again

A 3rd BiVi 2017 Keynote Presentation by Marc Streit who discusses visual exploration and sharing discoveries with examples from the Caleydo project.Chaired by Tom FreemanThe primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce...

Keywords: Communication, Information visualisation

Resource type: Video

From Visual Exploration of Biomedical Data to Storytelling and Back Again https://tess.elixir-europe.org/materials/from-visual-exploration-of-biomedical-data-to-storytelling-and-back-again A 3rd BiVi 2017 Keynote Presentation by Marc Streit who discusses visual exploration and sharing discoveries with examples from the Caleydo project.Chaired by Tom FreemanThe primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the nonlinear nature of the exploration process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses.In this talk, Marc introduces their efforts to more tightly integrate biomedical data exploration with the presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author 'Vistories', visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. Marc demonstrates how such methods can increase the reproducibility of cancer research and drug discovery.The presented work is part of the Caleydo project, which is a long-running collaboration between JKU Linz, Harvard University and the University of Utah.Marc Streit is a tenured Associate Professor at the Institute of Computer Graphics at Johannes Kepler University Linz where he leads the Visual Data Science group. He finished his PhD at the Institute for Computer Graphics and Vision at Graz University of Technology in early 2011 and moved to Linz later that year. In 2012 he was a visiting researcher at the Center for Biomedical Informatics (CBMI) at Harvard Medical School. As part of a Fulbright scholarship for research and lecturing he was a visiting professor at the Visual Computing Group at Harvard Paulson School in 2014. Marc also teaches courses at the Imperial College Business School and Salzburg University of Applied Sciences.His scientific areas of interest include visualization, visual analytics, and biological data visualization, where he is particularly interested in the integrated analysis of large heterogeneous data. Together with his team he develops novel visual analysis tools for cancer research, drug discovery, and other biomedical applications. Most of his research is embedded in the open-source project Caleydo, where he is one of the project leaders and founding-members. Since 2016 he is a CEO of the JKU spin-off company datavisyn.Marc won Best Paper Awards at InfoVis'13, BioVis’12, InfoVis’11, GI’10 and Honorable Mention Awards at EuroVis'16, CHI'14, InfoVis'14 and EuroVis’12. He is a co-author of the Nature Methods Points of View column. In 2013 he co-edited the Special Issue on Visual Analytics in the IEEE Computer journal. Additionally, he actively contributes to the scientific community by serving on the organizing and program committee of several scientific events as well as by acting as a reviewer for high-quality journals and conferences. He was program chair of the IEEE Visualization in Data Science Symposium and papers and now general chair of BioVis, the Symposium on Biological Data Visualization. Created at: 3rd BiVi Annual Meeting (2017). Prof. Marc Streit Communication, Information visualisation 2017-05-15
Docker tutorial: Gene regulation

Get started with Docker! Create a Docker account Install Docker on your local host Create shared repositories and download source data Fetch the Docker image and run it with shared folders Execute the pipeline JVH / Mac

Keywords: Docker, Gene regulation

Docker tutorial: Gene regulation https://tess.elixir-europe.org/materials/docker-tutorial-gene-regulation Get started with Docker! Create a Docker account Install Docker on your local host Create shared repositories and download source data Fetch the Docker image and run it with shared folders Execute the pipeline JVH / Mac Docker, Gene regulation
Docker for Beginners

What is Docker? Building an image BioShadock Orchestration

Keywords: Docker

Docker for Beginners https://tess.elixir-europe.org/materials/docker-for-beginners What is Docker? Building an image BioShadock Orchestration Docker
Docker Tutorial

Docker is free software that automates the deployment of applications in software containers executant in isolation. A Docker container, away from traditional virtual machines, requires no separate operating system and not providing any but relies instead on the core functionality and uses the...

Keywords: Docker

Docker Tutorial https://tess.elixir-europe.org/materials/docker-tutorial Docker is free software that automates the deployment of applications in software containers executant in isolation. A Docker container, away from traditional virtual machines, requires no separate operating system and not providing any but relies instead on the core functionality and uses the isolation of resources and namespaces separated to isolate the operating system as seen by the application. Docker
Docker and Galaxy

Questions Why Docker? What is it? How to use Docker? How to integrate Galaxy in Docker to facilitate its deployment? Objectives Docker basics Galaxy Docker image (usage) Galaxy Docker (internals) Galaxy flavours

Keywords: Docker, Galaxy

Docker and Galaxy https://tess.elixir-europe.org/materials/docker-and-galaxy Questions Why Docker? What is it? How to use Docker? How to integrate Galaxy in Docker to facilitate its deployment? Objectives Docker basics Galaxy Docker image (usage) Galaxy Docker (internals) Galaxy flavours Docker, Galaxy
Galaxy Docker Training Tutorial

Galaxy docker integration Enable Galaxy to use BioContainers (Docker) Galaxy with Docker swarm

Keywords: Docker, Galaxy

Galaxy Docker Training Tutorial https://tess.elixir-europe.org/materials/galaxy-docker-training-tutorial Galaxy docker integration Enable Galaxy to use BioContainers (Docker) Galaxy with Docker swarm Docker, Galaxy
Who is doing what on the cheese surface? Overview of the cheese microbial ecosystem functioning by metatranscriptomic analyses

Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a...

Keywords: metagenomics

Who is doing what on the cheese surface? Overview of the cheese microbial ecosystem functioning by metatranscriptomic analyses https://tess.elixir-europe.org/materials/who-is-doing-what-on-the-cheese-surface-overview-of-the-cheese-microbial-ecosystem-functioning-by-metatranscriptomic-analyses-55c4b5d0-ba6e-4ae0-879f-7bc27c10b3eb Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We used an iterative sensory procedure to select a simplified microbial consortium, composed of only nine species (three yeasts and six bacteria), producing the odor of Livarot-type cheese when inoculated in a sterile cheese curd. All the genomes were sequenced in order to determine the functional capacities of the different species and facilitate RNA-Seq data analyses. We followed the ripening process of experimental cheeses made using this consortium during four weeks, by metatranscriptomic and biochemical analyses. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. We next applied the same approach to investigate the activity of the microorganisms in real cheeses, namely Reblochon-style cheeses. This provided useful insights into the physiological changes that occur during cheese ripening, such as changes in energy substrates, anabolic reactions, or stresses. metagenomics 2016-12-15 2017-01-11
Welcome message

Presentation of the workshop (Chairman: Claudine Médigue)

Keywords: metagenomics

Welcome message https://tess.elixir-europe.org/materials/welcome-message-69dc597e-f839-448f-9c9d-3622ddffd592 Presentation of the workshop (Chairman: Claudine Médigue) metagenomics 2016-12-15 2017-01-11
Soil metagenomics, potential and pitfalls

The soil microorganisms are responsible for a range of critical functions including those that directly affect our quality of life (e.g., antibiotic production and resistance – human and animal health, nitrogen fixation -agriculture, pollutant degradation – environmental bioremediation)....

Keywords: metagenomics

Soil metagenomics, potential and pitfalls https://tess.elixir-europe.org/materials/soil-metagenomics-potential-and-pitfalls-04d3bb46-36ba-47c0-9993-9c7d0aacad32 The soil microorganisms are responsible for a range of critical functions including those that directly affect our quality of life (e.g., antibiotic production and resistance – human and animal health, nitrogen fixation -agriculture, pollutant degradation – environmental bioremediation). Nevertheless, genome structure information has been restricted by a large extent to a small fraction of cultivated species. This limitation can be circumvented now by modern alternative approaches including metagenomics or single cell genomics. Metagenomics includes the data treatment of DNA sequences from many members of the microbial community, in order to either extract a specific microorganism’s genome sequence or to evaluate the community function based on the relative quantities of different gene families. In my talk I will show how these metagenomic datasets can be used to estimate and compare the functional potential of microbial communities from various environments with a special focus on antibiotic resistance genes. However, metagenomic datasets can also in some cases be partially assembled into longer sequences representing microbial genetic structures for trying to correlate different functions to their co-location on the same genetic structure. I will show how the microbial community composition of a natural grassland soil characterized by extremely high microbial diversity could be managed for sequentially attempt to reconstruct some bacterial genomes. Metagenomics can also be used to exploit the genetic potential of environmental microorganisms. I will present an integrative approach coupling rrs phylochip and high throughput shotgun sequencing to investigate the shift in bacterial community structure and functions after incubation with chitin. In a second step, these functions of potential industrial interest can be discovered by using hybridization of soil metagenomic DNA clones spotted on high density membranes by a mix of oligonucleotide probes designed to target genes encoding for these enzymes. After affiliation of the positive hybridizing spots to the corresponding clones in the metagenomic library the inserts are sequenced, DNA assembled and annotated leading to identify new coding DNA sequences related to genes of interest with a good coverage but a low similarity against closest hits in the databases confirming novelty of the detected and cloned genes. metagenomics 2016-12-16 2017-01-11
From Samples to Data : Assuring Downstream Analysis with Upstream Planning

Metagenomic studies have gained increasing popularity in the years since the introduction of next generation sequencing. NGS allows for the production of millions of reads for each sample without the intermediate step of cloning. However, just as in the past, the quality of the data generate by...

Keywords: metagenomics

From Samples to Data : Assuring Downstream Analysis with Upstream Planning https://tess.elixir-europe.org/materials/from-samples-to-data-assuring-downstream-analysis-with-upstream-planning-6fac0f49-b453-4c15-a409-9753fb27ee9b Metagenomic studies have gained increasing popularity in the years since the introduction of next generation sequencing. NGS allows for the production of millions of reads for each sample without the intermediate step of cloning. However, just as in the past, the quality of the data generate by this powerful technology depends on sample preparation, library construction and the selection of appropriate sequencing technology and sequencing depth. Here we explore the different variables involved in the process of preparing samples for sequencing analysis including sample collection, DNA extraction and library construction. We also examine the various sequencing technologies deployed for routine metagenomic analysis and considerations for their use in different model systems including humans, mouse and the environment. Future developments such as long-reads will also be discussed to provide a complete picture of important aspects prior to data analyses which play a critical role in the success of metagenomic studies. metagenomics 2017-01-11
Sequencing 6000 chloroplast genomes : the PhyloAlps project

Biodiversity is now commonly described by DNA based approches. Several actors are currently using DNA to describe biodiversity, and most of the time they use different genetic markers that is hampering an easy sharing of the accumulated knowledges. Taxonomists rely a lot on the DNA Barcoding...

Keywords: metagenomics

Sequencing 6000 chloroplast genomes : the PhyloAlps project https://tess.elixir-europe.org/materials/sequencing-6000-chloroplast-genomes-the-phyloalps-project-a2b30d75-061a-4663-a5b8-593842df23bf Biodiversity is now commonly described by DNA based approches. Several actors are currently using DNA to describe biodiversity, and most of the time they use different genetic markers that is hampering an easy sharing of the accumulated knowledges. Taxonomists rely a lot on the DNA Barcoding initiative, phylogeneticists often prefer markers with better phylogenic properties, and ecologists, with the coming of the DNA metabarcoding, look for a third class of markers easiest to amplify from environmental DNA. Nevertheless they have all the same need of the knowledge accumulated by the others. But having different markers means that the sequecences have been got from different individuals in differente lab, following various protocoles. On that base, building a clean reference database, merging for each species all the available markers becomes a challenge. With the phyloAlps project we implement genome skimming at a large scale and propose it as a new way to set up such universal reference database usable by taxonomists, phylogeneticists, and ecologists. The Phyloalps project is producing for each species of the Alpine flora at least a genome skim composed of six millions of 100bp sequence reads. From such data it is simple to extract all chloroplastic, mitochondrial and nuclear rDNA markers commonely used. Moreover, most of the time we can get access to the complete chloroplast genome sequence and to a shallow sequencing of many nuclear genes. This methodes have already been successfully applied to algeae, insects and others animals. With the new single cell sequencing methods it will be applicable to most of the unicellular organisms. The good question is now : Can we consider the genome skimming as the next-generation DNA barcode ? metagenomics 2016-12-16 2017-01-11
Revealing and analyzing microbial networks: from topology to functional behaviors

Understanding the interactions between microbial communities and their environment well enough to be able to predict diversity on the basis of physicochemical parameters is a fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial communities is a complicated...

Keywords: metagenomics

Revealing and analyzing microbial networks: from topology to functional behaviors https://tess.elixir-europe.org/materials/revealing-and-analyzing-microbial-networks-from-topology-to-functional-behaviors-14d83c7f-c5f9-4738-8cd5-42e48a1088f7 Understanding the interactions between microbial communities and their environment well enough to be able to predict diversity on the basis of physicochemical parameters is a fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial communities is a complicated task, because (i) communities are complex, (ii) most are described qualitatively, and (iii) quantitative understanding of the way communities interacts with their surroundings remains incomplete. Within this seminar, we will illustrate two complementary approaches that aim to overcome these points in different manners. metagenomics 2016-12-16 2017-01-11
Reconstructing genomes from metagenomes: The holy grail of microbiology

Shotgun metagenomics provides insights into a larger context of naturally occurring microbial genomes when short reads are assembled into contiguous DNA segments (contigs). Contigs are often orders of magnitude longer than individual sequences, offering improved annotations, and key information...

Keywords: metagenomics

Reconstructing genomes from metagenomes: The holy grail of microbiology https://tess.elixir-europe.org/materials/reconstructing-genomes-from-metagenomes-the-holy-grail-of-microbiology-be78338f-13ef-40d6-92cf-621fbccf8808 Shotgun metagenomics provides insights into a larger context of naturally occurring microbial genomes when short reads are assembled into contiguous DNA segments (contigs). Contigs are often orders of magnitude longer than individual sequences, offering improved annotations, and key information about the organization of genes in cognate genomes. Several factors affect the assembly performance, and the feasibility of the assembly-based approaches varies across environments. However, increasing read lengths, novel experimental approaches, advances in computational tools and resources, and improvements in assembly algorithms and pipelines render the assembly-based metagenomic workflow more and more accessible. The utility of metagenomic assembly remarkably increases when contigs are organized into metagenome-assembled genomes (MAGs). Often-novel MAGs frequently provide deeper insights into bacterial lifestyles that would otherwise remain unknown as evidenced by recent discoveries. The increasing rate of the recovery of MAGs presents new opportunities to link environmental distribution patterns of microbial populations and their functional potential, and transforms the field of microbiology by providing a more complete understanding of the microbial life, ecology, and evolution. metagenomics 2016-12-16 2017-01-11
Rationale and Tools to look for the unknown in (metagenomic) sequence data

The interpretation of metagenomic data (environmental, microbiome, etc, ...) usually involves the recognition of sequence similarity with previously identified (micro-organisms). This is for instance the main approach to taxonomical assignments and a starting point to most diversity analyses....

Keywords: metagenomics

Rationale and Tools to look for the unknown in (metagenomic) sequence data https://tess.elixir-europe.org/materials/rationale-and-tools-to-look-for-the-unknown-in-metagenomic-sequence-data-5dd1e1a8-6db2-4b78-b1fc-60e1a5fbcee8 The interpretation of metagenomic data (environmental, microbiome, etc, ...) usually involves the recognition of sequence similarity with previously identified (micro-organisms). This is for instance the main approach to taxonomical assignments and a starting point to most diversity analyses. When exploring beyond the frontier of known biology, one should expect a large proportion of environmental sequences not exhibiting any significant similarity with known organisms. Notably, this is the case for eukaryotic viruses belonging to new families, for which the proportion of "no match" could reach 90%. Most metagenomics studies tend to ignore this large fraction of sequences that might be the equivalent of "black matter" in Biology. We will present some of the ideas and tools we are using to extract that information from large metagenomics data sets in search of truly unknown microorganisms. One of the tools, "Seqtinizer", an interactive contig selection/inspection interface will also be presented in the context of "pseudo-metagenomic" projects, where the main organism under genomic study (such as sponges or corals) turns out to be (highly) mixed with an unexpected population of food, passing-by, or symbiotic microorganisms. metagenomics 2016-12-16 2017-01-11
Prokaryotic Phylogeny on the Fly: databases and tools for online taxonomic identification

PPF (Prokaryotic Phylogeny on the Fly) is an automated pipeline allowing to compute molecular phylogenies for prokarotic organisms. It is based on a set of specialized databases devoted to SSU rRNA, the most commonly used marker for bacterial txonomic identification. Those databases are splitted...

Keywords: metagenomics

Prokaryotic Phylogeny on the Fly: databases and tools for online taxonomic identification https://tess.elixir-europe.org/materials/prokaryotic-phylogeny-on-the-fly-databases-and-tools-for-online-taxonomic-identification-84732559-32a2-4c4c-9c94-2bd3c3773717 PPF (Prokaryotic Phylogeny on the Fly) is an automated pipeline allowing to compute molecular phylogenies for prokarotic organisms. It is based on a set of specialized databases devoted to SSU rRNA, the most commonly used marker for bacterial txonomic identification. Those databases are splitted into different subsets using phylogenetic information. The procedure for computing a phylogeny is completely automated. Homologous sequence are first recruited through a BLAST search performed on a sequence (or a set of sequences). Then the homologous sequences detected are aligned using one of the multiple sequence alignment programs provided in the pipeline (MAFFT, MUSCLE or CLUSTALO). The alignment is then filtered using BMGE and a Maximum Likelihood (ML) tree is computed using the program FastTree. The tree can be rooted with an outgroup provided by the user and its leaves are coloured with a scheme related to the taxonomy of the sequences. The main advantage provided by PPF is that its databases are generated using a phylogeny-oriented procedure and and therefore much more efficient for phylogentic analyses that "generic" collections such as SILVA (in the case SSU rRNA) por GenBank. It is therefore much more suited to compute prokaryotic molecular phylogenies than related systems such as the Phylogeny.fr online system. PPF can be accessed online at https://umr5558-bibiserv.univ-lyon1.fr/lebibi/PPF-in.cgi metagenomics 2016-12-16 2017-01-11
New perspectives on nitrite-oxidizing bacteria - linking genomes to physiology

It is a generally accepted characteristic of the biogeochemical nitrogen cycle that nitrification is catalyzed by two distinct clades of microorganisms. First, ammonia-oxidizing bacteria and archaea convert ammonia to nitrite, which subsequently is oxidized to nitrate by nitrite-oxidizing...

Keywords: metagenomics

New perspectives on nitrite-oxidizing bacteria - linking genomes to physiology https://tess.elixir-europe.org/materials/new-perspectives-on-nitrite-oxidizing-bacteria-linking-genomes-to-physiology-6bc8b25e-043d-47f1-b184-c776d595fb7b It is a generally accepted characteristic of the biogeochemical nitrogen cycle that nitrification is catalyzed by two distinct clades of microorganisms. First, ammonia-oxidizing bacteria and archaea convert ammonia to nitrite, which subsequently is oxidized to nitrate by nitrite-oxidizing bacteria (NOB). The latter were traditionally perceived as physiologically restricted organisms and were less intensively studied than other nitrogen-cycling microorganisms. This picture is contrasted by new discoveries of an unexpected high diversity of mostly uncultured NOB and a great physiological versatility, which includes complex microbe-microbe interactions and lifestyles outside the nitrogen cycle. Most surprisingly, close relatives to NOB perform complete nitrification (ammonia oxidation to nitrate), a process that had been postulated to occur under conditions selecting for low growth rates but high growth yields. The existence of Nitrospira species that encode all genes required for ammonia and nitrite oxidation was first detected by metagenomic analyses of an enrichment culture for nitrogen-transforming microorganisms sampled from the anoxic compartment of a recirculating aquaculture system biofilter. Batch incubations and FISH-MAR experiments showed that these Nitrospira indeed formed nitrate from the aerobic oxidation of ammonia, and used the energy derived from complete nitrification for carbon fixation, thus proving that they indeed represented the long-sought-after comammox organisms. Their ammonia monooxygenase (AMO) enzymes were distinct from canonical AMOs, therefore rendering recent horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. Instead, their AMO displayed highest similarities to the “unusual” particulate methane monooxygenase from Crenothrix polyspora, thus shedding new light onto the function of this sequence group. This recognition of a novel AMO type indicates that a whole group of ammonia-oxidizing microorganisms has been overlooked, and will improve our understanding of the environmental abundance and distribution of this functional group. Data mining of publicly available metagenomes already indicated a widespread occurrence in natural and engineered environments like aquifers and paddy soils, and drinking and wastewater treatment systems. metagenomics 2016-12-16 2017-01-11
Multiple Comparative Metagenomics using Multiset k-mer Counting

Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can...

Keywords: metagenomics

Multiple Comparative Metagenomics using Multiset k-mer Counting https://tess.elixir-europe.org/materials/multiple-comparative-metagenomics-using-multiset-k-mer-counting-4c0add23-9776-4d57-8bd2-43ce078fd286 Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can be associated to known organisms. On the other hand, de novo methods, that compare the whole set of sequences, do not scale up on ambitious metagenomic projects. These limitations motivated the development of a new de novo metagenomic comparative method, called Simka. This method computes a large collection of standard ecology distances by replacing species counts by k-mer counts. Simka scales-up today metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets. Experiments on public Human Microbiome Project datasets demonstrate that Simka captures the essential underlying biological structure. Simka was able to compute in a few hours both qualitative and quantitative ecology distances on hundreds of metagenomic samples (690 samples, 32 billions of reads). We also demonstrate that analyzing metagenomes at the k-mer level is highly correlated with extremely precise de novo comparison techniques which rely on all-versus-all sequences alignment strategy. metagenomics 2016-12-16 2017-01-11
Holistic metagenomics in marine communities

Complex microscopic communities are composed of species belonging to all life realms, from single-cell prokaryotes to multicellular eukaryotes of small size. Each component of a community needs to be studied for a full understanding of the functions performed by the whole assemblage, however...

Keywords: metagenomics

Holistic metagenomics in marine communities https://tess.elixir-europe.org/materials/holistic-metagenomics-in-marine-communities-62c31138-1982-4acd-9750-35dea2e77dc2 Complex microscopic communities are composed of species belonging to all life realms, from single-cell prokaryotes to multicellular eukaryotes of small size. Each component of a community needs to be studied for a full understanding of the functions performed by the whole assemblage, however methods to investigate microbiomes are generally restricted to a single kingdom. Using examples from the Tara Oceans project, we will show how size fractionation and use of varied metabarcoding, metagenomics and metatranscriptomics approaches can help studying the marine plankton community as a whole, in a wide geographic space. metagenomics 2016-12-16 2017-01-11
MG-RAST — experiences from processing a quarter million metagenomic data sets

MG-RAST has been offering metagenomic analyses since 2007. Over 20,000 researchers have submitted data. I will describe the current MG-RAST implementation and demonstrate some of its capabilities. In the course of the presentation I will highlight several metagenomic pitfalls. MG-RAST:...

Keywords: metagenomics

MG-RAST — experiences from processing a quarter million metagenomic data sets https://tess.elixir-europe.org/materials/mg-rast-experiences-from-processing-a-quarter-million-metagenomic-data-sets-5c190d47-0371-4950-bee2-5ff5fccfc499 MG-RAST has been offering metagenomic analyses since 2007. Over 20,000 researchers have submitted data. I will describe the current MG-RAST implementation and demonstrate some of its capabilities. In the course of the presentation I will highlight several metagenomic pitfalls. MG-RAST: http://metagenomics.anl.gov MG-RAST-APP: http://api.metagenomics.anl.gov/api.html metagenomics 2016-12-16 2017-01-11
Hidden in the permafrost

The last decade witnessed the discovery of four families of giant viruses infecting Acanthamoeba. They have genome encoding from 500 to 2000 genes, a large fraction of which encoding proteins of unknown origin. These unique proteins meant to recognize and manipulate the same building blocks as...

Keywords: metagenomics

Hidden in the permafrost https://tess.elixir-europe.org/materials/hidden-in-the-permafrost-c83267ed-68a6-4f10-b584-9f9eaae52009 The last decade witnessed the discovery of four families of giant viruses infecting Acanthamoeba. They have genome encoding from 500 to 2000 genes, a large fraction of which encoding proteins of unknown origin. These unique proteins meant to recognize and manipulate the same building blocks as cells raise the question on their origin as well as the role viruses played in the cellular word evolution. The Mimiviridae and the Pandoraviridae are increasingly populated by members from very diverse habitats and are ubiquitous on the planet. After prospecting the space, we went back in the past and isolated two other giant virus families from a 30,000 years old permafrost sample, Pithovirus and Mollivirus sibericum. A metagenomics study of the sample was performed to inventory its biodiversity and assess to what extend the host and the viruses were dominant. I will describe the two sequencing approaches which have been used and compare the results. 1: Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. The 1.2-megabase genome sequence of Mimivirus. Science. 2004 Nov 19;306(5700):1344-50. 2: Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C. Pandoraviruses:amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013 Jul 19;341(6143):281-6. 3: Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Couté Y, Rivkina E, Abergel C, Claverie JM. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4274-9. 4: Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic JM, Ramus C, Bruley C, Labadie K, Shmakova L, Rivkina E, Couté Y, Abergel C, Claverie JM. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5327-35. metagenomics 2016-12-16 2017-01-11
Gut metagenomics in cardiometabolic diseases

Cardio-metabolic and Nutrition-related diseases (CMDs) represent an enormous burden for health care. They are characterized by very heterogeneous phenotypes progressing with time. It is virtually impossible to predict who will or will not develop cardiovascular comorbidities. There is a clear...

Keywords: metagenomics

Gut metagenomics in cardiometabolic diseases https://tess.elixir-europe.org/materials/gut-metagenomics-in-cardiometabolic-diseases-339bc8b2-0c05-4f21-9aba-2ae647a5178c Cardio-metabolic and Nutrition-related diseases (CMDs) represent an enormous burden for health care. They are characterized by very heterogeneous phenotypes progressing with time. It is virtually impossible to predict who will or will not develop cardiovascular comorbidities. There is a clear need to intervene earlier in the natural cycle of the disease, before irreversible tissue damages develop. Predictive tools still remain elusive and environmental factors (food, nutrition, physical activity and psychosocial factors) play major roles in the development of these interrelated pathologies. Poor nutritional environment and lifestyle also promote health deterioration resulting in CMD progression. In the last few years, the characterization of the gut microbiome (i.e. collective bacteria genome) and gut-derived molecules (i.e. metabolites, lipids, inflammatory molecules) has opened up new avenues for the generation of fundamental knowledge regarding putative shared pathways in CMD. The gut microbiome is likely to have an even greater impact than genetic factors given its close relationship with environmental factors. In metabolic disorders, the discoveries that low bacterial gene richness associates with cardiovascular risks stimulate encourage these developments. Due to the complexity of the gut microbiome, and its interactions with human (host) metabolism as well as with the immune system, it is only through integrative analyses where metabolic network models are used as scaffold for analysis that it will be possible to identify markers and shared pathways, which will contribute to improve patient stratification and develop new modes of patient care. metagenomics 2016-12-15 2017-01-11
Fast filtering, mapping and assembly of 16S ribosomal RNA

The application of next-generation sequencing technologies to RNA orDNA directly extracted from a community of organisms yields a mixtureof nucleotide fragments. The task to distinguish amongst these and tofurther categorize the families of ribosomal RNAs (or any other givenmarker) is an...

Keywords: metagenomics

Fast filtering, mapping and assembly of 16S ribosomal RNA https://tess.elixir-europe.org/materials/fast-filtering-mapping-and-assembly-of-16s-ribosomal-rna-83398e0f-76de-4945-b0a8-8274413a6a47 The application of next-generation sequencing technologies to RNA orDNA directly extracted from a community of organisms yields a mixtureof nucleotide fragments. The task to distinguish amongst these and tofurther categorize the families of ribosomal RNAs (or any other givenmarker) is an important step for examining the phylogeneticclassification of the constituting species. In thisperspective, we have developed a complete bioinformatics suite, called MATAM, capable of handling large sets of reads in a fast and accurate way. MATAM covers all steps of the analysis, from the identificationof reads of interest in the raw sequencing data to the reconstructionof the full-length sequences of the marker and alignment to areference database for taxonomic assignment. Part of MATAM is basedon the SortMeRNA software, also developed by the team. metagenomics 2016-12-16 2017-01-11
Exploiting collisions between DNA molecules to characterize the genomic structures of complex communities

Meta3C is an experimental and computational approach that exploits the physical contacts experienced by DNA molecules sharing the same cellular compartments. These collisions provide a quantitativeinformation that allows interpreting and phasing the genomes present within complex mixes of species...

Keywords: metagenomics

Exploiting collisions between DNA molecules to characterize the genomic structures of complex communities https://tess.elixir-europe.org/materials/exploiting-collisions-between-dna-molecules-to-characterize-the-genomic-structures-of-complex-communities-e13ff1e3-f218-4367-b445-2a8e18bb7834 Meta3C is an experimental and computational approach that exploits the physical contacts experienced by DNA molecules sharing the same cellular compartments. These collisions provide a quantitativeinformation that allows interpreting and phasing the genomes present within complex mixes of species without prior knowledge. Not only the exploitation of chromosome physical 3D signatures hold interesting premises regarding solving the genome sequences from discrete species, but it also allows assigning mobile elements such as plasmids or phages to their hosts. metagenomics 2016-12-15 2017-01-11
Dr Jekyll and Mr Hyde: The dual face of metagenomics in phylogenetic analysis

The aim of this lecture is to present the impact of metagenomics and single-cell genomics on public databases. These new powerful approches allow us to have access to the diversity of life on our planet. However, care has to be taken when using these data for posterior analyses, such as...

Keywords: metagenomics

Dr Jekyll and Mr Hyde: The dual face of metagenomics in phylogenetic analysis https://tess.elixir-europe.org/materials/dr-jekyll-and-mr-hyde-the-dual-face-of-metagenomics-in-phylogenetic-analysis-2a7d1d11-5a75-4365-b6bd-c48c8ad9a5dd The aim of this lecture is to present the impact of metagenomics and single-cell genomics on public databases. These new powerful approches allow us to have access to the diversity of life on our planet. However, care has to be taken when using these data for posterior analyses, such as phylogenetic studies, as critical errors can still be present in the databases. This course will incorporate examples taken from real studies, and we will investigate methods used for error detection. metagenomics 2016-12-16 2017-01-11