Register training material
14 materials found

Authors: Jared Simpson  or slugger70 


Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-6-de-novo-assmebly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists Graduate students
Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Graduate students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-5-genome-assembly Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-4-genome-alignment Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly

Course covers the bioinformatics tools required to analyze genomic data sets.

Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2017-module-3-genome-alignment-and-assembly Course covers the bioinformatics tools required to analyze genomic data sets. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2017-module-6-de-novo-assembly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate Students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 6-De Novo Assembly

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-6-de-novo-assembly Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-1-introduction-to-high-throughput-sequencing Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Graduate students Post-Doctoral Fellows Researchers Biologists, Genomicists, Computer Scientists
Genome Annotation - Genome annotation with Prokka

Genome annotation is a multi-level process that includes prediction of protein-coding genes, as well as other functional genome units such as structural RNAs, tRNAs, small RNAs, pseudogenes, control regions, direct and inverted repeats, insertion sequences, transposons and other mobile...

Resource type: Tutorial

Genome Annotation - Genome annotation with Prokka https://tess.elixir-europe.org/materials/genome-annotation-genome-annotation-with-prokka Genome annotation is a multi-level process that includes prediction of protein-coding genes, as well as other functional genome units such as structural RNAs, tRNAs, small RNAs, pseudogenes, control regions, direct and inverted repeats, insertion sequences, transposons and other mobile elements. Questions of the tutorial: - How to annotate a bacterial genome? - How to visualize annoted genomic features? Objectives of the tutorial: - Load genome into Galaxy - Annotate genome with Prokka - View annotations in JBrowse
Galaxy Server administration - Server Monitoring and Maintenance

Resources related to configuration and maintenance of Galaxy servers Questions of the tutorial: - How to monitor a Galaxy service? - What are the best practices to maintain a Galaxy server? Objectives of the tutorial: - Learn about different monitoring strategies. - Setup and start the...

Resource type: Tutorial

Galaxy Server administration - Server Monitoring and Maintenance https://tess.elixir-europe.org/materials/galaxy-server-administration-server-monitoring-and-maintenance Resources related to configuration and maintenance of Galaxy servers Questions of the tutorial: - How to monitor a Galaxy service? - What are the best practices to maintain a Galaxy server? Objectives of the tutorial: - Learn about different monitoring strategies. - Setup and start the Galaxy reports app.
Assembly - Unicycler Assembly

DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome...

Resource type: Tutorial

Assembly - Unicycler Assembly https://tess.elixir-europe.org/materials/assembly-unicycler-assembly DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome Assembly is the process of reconstructing the original DNA sequence from the fragment reads alone. Questions of the tutorial: - I have short reads and long reads. How do I assemble a genome? Objectives of the tutorial: - Perform Quality Control on your reads - Perform a Small genome Assembly with Unicycler - Evaluate the Quality of the Assembly with Quast - Annotate the assembly with Prokka
Assembly - De Bruijn Graph Assembly

DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome...

Resource type: Tutorial

Assembly - De Bruijn Graph Assembly https://tess.elixir-europe.org/materials/assembly-de-bruijn-graph-assembly DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome Assembly is the process of reconstructing the original DNA sequence from the fragment reads alone. Questions of the tutorial: - What are the factors that affect genome assembly? - How does Genome assembly work? Objectives of the tutorial: - Perform an optimised Velvet assembly with the Velvet Optimiser - Compare this assembly with those we did in the basic tutorial - Perform an assembly using the SPAdes assembler.
Assembly - Introduction to Genome Assembly

DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome...

Resource type: Tutorial

Assembly - Introduction to Genome Assembly https://tess.elixir-europe.org/materials/assembly-introduction-to-genome-assembly DNA sequence data has become an indispensable tool for Molecular Biology & Evolutionary Biology. Study in these fields now require a genome sequence to work from. We call this a 'Reference Sequence.' We need to build a reference for each species. We do this by Genome Assembly. De novo Genome Assembly is the process of reconstructing the original DNA sequence from the fragment reads alone. Questions of the tutorial: - How do we perform a very basic genome assembly from short read data? Objectives of the tutorial: - assemble some paired end reads using Velvet - examine the output of the assembly.