Register training material
20 materials found

Authors: Jared Simpson  or Gary Bader  or Anna Poetsch 


Pathways and Network Analysis of -Omics data 2018 Module 3-Network Visualization and Analysis with Cytoscape

Course covers the bioinformatics concepts and tools available for interpreting a gene list using pathway and network information.

Pathways and Network Analysis of -Omics data 2018 Module 3-Network Visualization and Analysis with Cytoscape https://tess.elixir-europe.org/materials/pathways-and-network-analysis-of-omics-data-2018-module-3-network-visualization-and-analysis-with-cytoscape Course covers the bioinformatics concepts and tools available for interpreting a gene list using pathway and network information. Researchers Graduate students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Pathways and Network Analysis of -Omics Data 2018 Module 1-Introduction to Pathway and Network Analysis

Course covers the bioinformatics concepts and tools available for interpreting a gene list using pathway and network information.

Pathways and Network Analysis of -Omics Data 2018 Module 1-Introduction to Pathway and Network Analysis https://tess.elixir-europe.org/materials/pathways-and-network-analysis-of-omics-data-2018-module-1-introduction-to-pathway-and-network-analysis Course covers the bioinformatics concepts and tools available for interpreting a gene list using pathway and network information. Researchers Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists Graduate Students
Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-6-de-novo-assmebly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists Graduate students
Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Graduate students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-5-genome-assembly Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-4-genome-alignment Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Pathways and Network Analysis of -Omics Data 2017 Module 3-Network Visualization and Analysis with Cytoscape

Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list.

Pathways and Network Analysis of -Omics Data 2017 Module 3-Network Visualization and Analysis with Cytoscape https://tess.elixir-europe.org/materials/pathways-and-network-analysis-of-omics-data-2017-module-3-network-visualization-and-analysis-with-cytoscape Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list.
Pathways and Network Analysis 2017 Module 2-Finding Over-Represented Pathways

Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list.

Pathways and Network Analysis 2017 Module 2-Finding Over-Represented Pathways https://tess.elixir-europe.org/materials/pathways-and-network-analysis-2017-module-2-finding-over-represented-pathways Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list.
Pathways and Network Analysis of -Omics Data 2017 Module 1-Introduction to Pathway and Network Analysis

Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list.

Pathways and Network Analysis of -Omics Data 2017 Module 1-Introduction to Pathway and Network Analysis https://tess.elixir-europe.org/materials/pathways-and-network-analysis-of-omics-data-2017-module-1-introduction-to-pathway-and-network-analysis Course covers the bioinformatics tools available for analyzing and conducting pathway and network analysis on a gene list. Researchers Biologists, Genomicists, Computer Scientists Graduate Students Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly

Course covers the bioinformatics tools required to analyze genomic data sets.

Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2017-module-3-genome-alignment-and-assembly Course covers the bioinformatics tools required to analyze genomic data sets. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2017-module-6-de-novo-assembly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate Students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 6-De Novo Assembly

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-6-de-novo-assembly Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-1-introduction-to-high-throughput-sequencing Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Graduate students Post-Doctoral Fellows Researchers Biologists, Genomicists, Computer Scientists
ChIP-seq analysis using R - Experimental design and peak calling.

This lecture is an introduction to ChIP-seq experiments and data. It provides a theoretical background to experimental design and peak calling.

Keywords: ChIP-Seq, Experimental-design, Peak-calling, Visualisation

ChIP-seq analysis using R - Experimental design and peak calling. https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r-experimental-design-and-peak-calling This lecture is an introduction to ChIP-seq experiments and data. It provides a theoretical background to experimental design and peak calling. ChIP-Seq, Experimental-design, Peak-calling, Visualisation
ChIP-seq analysis using R - Quality Control

This practical illustrates steps that can be undertaken to assess the quality of the sequencing data. We will start from the fastq files and assess their quality in respect to potential contamination and technical artifacts.

Scientific topics: RNA-Seq

Keywords: ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design

ChIP-seq analysis using R - Quality Control https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r-quality-control This practical illustrates steps that can be undertaken to assess the quality of the sequencing data. We will start from the fastq files and assess their quality in respect to potential contamination and technical artifacts. RNA-Seq ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design
ChIP-seq analysis using R - File formats and QC

This lecture introduces the file formats of sequencing data before alignment and covers the general quality control of sequencing data focussing on RNA-Seq and ChIP-Seq.

Scientific topics: RNA-Seq

Keywords: ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design

ChIP-seq analysis using R - File formats and QC https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r-file-formats-and-qc This lecture introduces the file formats of sequencing data before alignment and covers the general quality control of sequencing data focussing on RNA-Seq and ChIP-Seq. RNA-Seq ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design
ChIP-seq analysis using R - Mapping and file formats

This lecture introduces the principles behind alignment, different tools and de-novo assembly. It also covers post mapping data format and quality control

Scientific topics: Sequence assembly, RNA-Seq

Keywords: ChIP-Seq, RNA-Seq, Alignment, Data-format, Assembly, QC

ChIP-seq analysis using R - Mapping and file formats https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r-mapping-and-file-formats This lecture introduces the principles behind alignment, different tools and de-novo assembly. It also covers post mapping data format and quality control Sequence assembly RNA-Seq ChIP-Seq, RNA-Seq, Alignment, Data-format, Assembly, QC
ChIP-seq analysis using R - Quality Control Walkthrough

This practical illustrates steps that can be undertaken to assess the quality of the sequencing data. We will start from the fastq files and assess their quality in respect to potential contamination and technical artifacts.

Scientific topics: RNA-Seq

Keywords: ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design

ChIP-seq analysis using R - Quality Control Walkthrough https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r-quality-control-walkthrough This practical illustrates steps that can be undertaken to assess the quality of the sequencing data. We will start from the fastq files and assess their quality in respect to potential contamination and technical artifacts. RNA-Seq ChIP-Seq, RNA-Seq, QC, Data-format, Experimental-design
ChIP-seq analysis using R

ChIP-seq is the most commonly used technique to study binding profiles of chromatin proteins, such as TFs or histone modification patterns. This course is an introduction to ChIP-seq data, and data analysis mainly using R, some command line based peak-callers and online software. It provides a...

Keywords: ChIP-Seq, Experimental-design, QC, Data-format, Alignment, Peak-calling, Differential-binding, Visualisation, Annotation

ChIP-seq analysis using R https://tess.elixir-europe.org/materials/chip-seq-analysis-using-r ChIP-seq is the most commonly used technique to study binding profiles of chromatin proteins, such as TFs or histone modification patterns. This course is an introduction to ChIP-seq data, and data analysis mainly using R, some command line based peak-callers and online software. It provides a theoretical background and the means to perform peak calling and differential binding analysis. ChIP-Seq, Experimental-design, QC, Data-format, Alignment, Peak-calling, Differential-binding, Visualisation, Annotation