Register training material
25 materials found

Authors: Jared Simpson  or Manuel Corpas  or jmchilton  or Radhika Khetani @radhika 


Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 6-De Novo Assmebly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-6-de-novo-assmebly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists Graduate students
Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads.

Informatics on High-Throughput Sequencing Data 2018 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2018-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data, where the focus is on Illumina reads although information is applicable to all sequencer reads. Researchers Graduate students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 5-Genome Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-5-genome-assembly Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment

Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud.

Bioinformatics for Cancer Genomics 2018 Module 4-Genome Alignment https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2018-module-4-genome-alignment Course covers the key bioinformatics concepts and tools required to analyze cancer genomic data sets and access and work with data sets in the cloud. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly

Course covers the bioinformatics tools required to analyze genomic data sets.

Bioinformatics for Cancer Genomics 2017 Module 3-Genome Alignment and Assembly https://tess.elixir-europe.org/materials/bioinformatics-for-cancer-genomics-2017-module-3-genome-alignment-and-assembly Course covers the bioinformatics tools required to analyze genomic data sets. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-2017-module-6-de-novo-assembly Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate Students Post-Doctoral Fellows Biologists, Genomicists, Computer Scientists
Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads.

Informatics on High-Throughput Sequencing Data 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/informatics-on-high-throughput-sequencing-data-module-1-introduction-to-high-throughput-sequencing Course covers the bioinformatics tools available for managing and interpreting high-throughput sequencing data with a focus on Illumina reads. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 6-De Novo Assembly

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 6-De Novo Assembly https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-6-de-novo-assembly Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Researchers Graduate students Biologists, Genomicists, Computer Scientists Post-Doctoral Fellows
High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing

Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome.

High-Throughput Biology 2017 Module 1-Introduction to High-Throughput Sequencing https://tess.elixir-europe.org/materials/high-throughput-biology-2017-module-1-introduction-to-high-throughput-sequencing Course covers the key bioinformatics concepts and tools required to analyze DNA- and RNA- sequence reads using a reference genome. Graduate students Post-Doctoral Fellows Researchers Biologists, Genomicists, Computer Scientists
Data Manipulation - Collections: Rule Based Uploader

A collection of microtutorials explaining data manipulation within Galaxy Questions of the tutorial: - How to use the rule based uploader to create complex collections Objectives of the tutorial: - Learn about the Rule Based Uploader

Resource type: Tutorial

Data Manipulation - Collections: Rule Based Uploader https://tess.elixir-europe.org/materials/data-manipulation-collections-rule-based-uploader A collection of microtutorials explaining data manipulation within Galaxy Questions of the tutorial: - How to use the rule based uploader to create complex collections Objectives of the tutorial: - Learn about the Rule Based Uploader
Introduction to Galaxy - Rule Based Uploader

Galaxy is a scientific workflow, data integration, and data and analysis persistence and publishing platform that aims to make computational biology accessible to research scientists that do not have computer programming experience. Questions of the tutorial: - How to use the rule based...

Resource type: Tutorial

Introduction to Galaxy - Rule Based Uploader https://tess.elixir-europe.org/materials/introduction-to-galaxy-rule-based-uploader Galaxy is a scientific workflow, data integration, and data and analysis persistence and publishing platform that aims to make computational biology accessible to research scientists that do not have computer programming experience. Questions of the tutorial: - How to use the rule based uploader to create complex collections Objectives of the tutorial: - Learn about the Rule Based Uploader
Development in Galaxy - Tool Dependencies and Containers

Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - What are the advantages of running my Galaxy tool inside of a container? - How does Galaxy find a container...

Resource type: Tutorial

Development in Galaxy - Tool Dependencies and Containers https://tess.elixir-europe.org/materials/development-in-galaxy-tool-dependencies-and-containers Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - What are the advantages of running my Galaxy tool inside of a container? - How does Galaxy find a container to run my tool in? - What are BioContainers and how are they related to Galaxy? Objectives of the tutorial: - Explore the differences between containerizing Galaxy and tool execution. - Discuss the advantages of containerizing tools. - Learn to build best practice tools ready to be containerized.
Development in Galaxy - Galaxy Code Architecture

Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - How is the Galaxy code structured? - What do the various other projects related to Galaxy do? - What...

Resource type: Slides

Development in Galaxy - Galaxy Code Architecture https://tess.elixir-europe.org/materials/development-in-galaxy-galaxy-code-architecture Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - How is the Galaxy code structured? - What do the various other projects related to Galaxy do? - What happens when I start Galaxy? Objectives of the tutorial: - Explore various aspects of the Galaxy codebase. - Understand the various top-level files and modules in Galaxy. - Understand how dependencies work in Galaxy's frontend and backend.
Development in Galaxy - Tool Dependencies and Conda

Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - How can I connect tools to applications and libraries? - What are the advantages of declaring dependencies...

Resource type: Tutorial

Development in Galaxy - Tool Dependencies and Conda https://tess.elixir-europe.org/materials/development-in-galaxy-tool-dependencies-and-conda Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - How can I connect tools to applications and libraries? - What are the advantages of declaring dependencies for my tool? - What are Conda and Bioconda? - What are Conda recipes and environments? - How do I find and use existing Conda recipes? - How do I develop Conda recipes for use within Galaxy tools? Objectives of the tutorial: - Learn to use existing Conda recipes to enable best practice tool dependency management in Galaxy. - Learn the basics of building Conda recipes and contributing to Bioconda. - Learn to use Planemo to assist in developing Galaxy tools from existing and new Conda recipes.
Development in Galaxy - Tool development and integration into Galaxy

Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - What is a tool for Galaxy? - How to build a tool/wrapper with the good practices? - How to deal with the...

Resource type: Tutorial

Development in Galaxy - Tool development and integration into Galaxy https://tess.elixir-europe.org/materials/development-in-galaxy-tool-development-and-integration-into-galaxy Galaxy is an open-source project. Everyone can contribute to its development with core Galaxy development, integration of softwares in Galaxy environment, ... Questions of the tutorial: - What is a tool for Galaxy? - How to build a tool/wrapper with the good practices? - How to deal with the tool environment? Objectives of the tutorial: - Discover what is a wrapper and its structure - Use the Planemo utilities to develop a good wrapper - Deal with the dependencies - Write functional tests - Make a tool ready for publishing in a ToolShed
BioJS

Introduction to BioJS a standard for visualisation of biological data in JavaScript

Keywords: Biojs, Javascript, Software, Standards

BioJS https://tess.elixir-europe.org/materials/biojs-1ff5ad84-3b06-4997-bba6-e18a4dcf32c0 Introduction to BioJS a standard for visualisation of biological data in JavaScript Biojs, Javascript, Software, Standards software developers, bioinformaticians 2014-02-27 2017-10-09
GOBLET Training portal

Presention

Keywords: Goblet

GOBLET Training portal https://tess.elixir-europe.org/materials/goblet-training-portal Presention Goblet 2015-07-01 2017-10-09
Presentation About GOBLET Portal

This is a presentation I gave at the Jornadas de Bioinformática in Seville, Spain (24/09/14)

Keywords: Goblet, Training portal

Presentation About GOBLET Portal https://tess.elixir-europe.org/materials/presentation-about-goblet-portal This is a presentation I gave at the Jornadas de Bioinformática in Seville, Spain (24/09/14) Goblet, Training portal Bioinformatics General Interest Trainers Users 2014-09-26 2017-10-09
Training Bioinformatics in the Cloud

I present the points of view, the challenges and advantages of developing training materials through the cloud.

Keywords: Advanced bioinformatics training, Cloud computing, Training

Training Bioinformatics in the Cloud https://tess.elixir-europe.org/materials/training-bioinformatics-in-the-cloud I present the points of view, the challenges and advantages of developing training materials through the cloud. Advanced bioinformatics training, Cloud computing, Training Bench biologists beginner bioinformaticians 2014-05-20 2017-10-09
RNA-seq analysis

I give an overview of the analysis of gene expression in plants using RNA-seq data. This course provides a foundation on the tuxedo software suite: TopHat, Cufflinks, CummeRbund.

RNA-seq analysis https://tess.elixir-europe.org/materials/rna-seq-analysis I give an overview of the analysis of gene expression in plants using RNA-seq data. This course provides a foundation on the tuxedo software suite: TopHat, Cufflinks, CummeRbund. 2013-06-28 2017-10-09
Day 4 - RNA-Seq Analysis

Day 4 focuses on the final steps after production of significant gene lists, including gene clustering, visualization, and annotation.

Keywords: Exploratory-analysis, Differential-expression, Statistical-model, Annotation

Day 4 - RNA-Seq Analysis https://tess.elixir-europe.org/materials/day-4-rna-seq-analysis Day 4 focuses on the final steps after production of significant gene lists, including gene clustering, visualization, and annotation. Exploratory-analysis, Differential-expression, Statistical-model, Annotation
Day 3 - RNA-Seq Analysis

Day 3 focuses on statistical analysis of RNA-Seq data and identification of differentiall expressed genes in multiple comparisons.

Keywords: QC, Exploratory-analysis, Differential-expression, Statistical-model, Pre-processing

Day 3 - RNA-Seq Analysis https://tess.elixir-europe.org/materials/day-3-rna-seq-analysis Day 3 focuses on statistical analysis of RNA-Seq data and identification of differentiall expressed genes in multiple comparisons. QC, Exploratory-analysis, Differential-expression, Statistical-model, Pre-processing
RNA-Seq Analysis with Biocluster and R

Sequencing of RNA (RNA-Seq) is the latest method to assess global gene expression because it

Scientific topics: RNA-Seq

Keywords: RNA-Seq, Alignment, Annotation, BAM, Differential-expression, Exploratory-analysis, Expression-estimation, FASTA, FASTQ, Feature-summarisation, Pre-processing, QC, Statistical-model

RNA-Seq Analysis with Biocluster and R https://tess.elixir-europe.org/materials/rna-seq-analysis-with-biocluster-and-r Sequencing of RNA (RNA-Seq) is the latest method to assess global gene expression because it RNA-Seq RNA-Seq, Alignment, Annotation, BAM, Differential-expression, Exploratory-analysis, Expression-estimation, FASTA, FASTQ, Feature-summarisation, Pre-processing, QC, Statistical-model
Day 1 - RNA-Seq Analysis

Day 1 starts at the very beginning of a typical RNA-Seq workflow, explaining the sequencing technology and considerations for experimental design, then starts with hands-on application of working with sequencing data fresh off the sequencer.

Keywords: Alignment, BAM, FASTA, FASTQ, QC

Day 1 - RNA-Seq Analysis https://tess.elixir-europe.org/materials/day-1-rna-seq-analysis Day 1 starts at the very beginning of a typical RNA-Seq workflow, explaining the sequencing technology and considerations for experimental design, then starts with hands-on application of working with sequencing data fresh off the sequencer. Alignment, BAM, FASTA, FASTQ, QC
Day 2 - RNA-Seq Analysis

Day 2 continues throught the steps in a typical RNA-Seq experiment from alignment to sample QC and count normalization, including a brief overview of the IGV Genome Browser.

Keywords: Alignment, BAM, FASTA, FASTQ, QC, Exploratory-analysis, Feature-summarisation, Pre-processing

Day 2 - RNA-Seq Analysis https://tess.elixir-europe.org/materials/day-2-rna-seq-analysis Day 2 continues throught the steps in a typical RNA-Seq experiment from alignment to sample QC and count normalization, including a brief overview of the IGV Genome Browser. Alignment, BAM, FASTA, FASTQ, QC, Exploratory-analysis, Feature-summarisation, Pre-processing